欧美……一区二区三区,欧美日韩亚洲另类视频,亚洲国产欧美日韩中字,日本一区二区三区dvd视频在线

產品展廳收藏該商鋪

您好 登錄 注冊

當前位置:
世聯(lián)博研(北京)科技有限公司>>現(xiàn)貨>>3D Liver canaliculi assays批發(fā)價格

3D Liver canaliculi assays批發(fā)價格

返回列表頁
  • 3D Liver canaliculi assays批發(fā)價格

  • 3D Liver canaliculi assays批發(fā)價格

  • 3D Liver canaliculi assays批發(fā)價格

  • 3D Liver canaliculi assays批發(fā)價格

  • 3D Liver canaliculi assays批發(fā)價格

收藏
舉報
參考價 面議
具體成交價以合同協(xié)議為準
  • 型號
  • 品牌 其他品牌
  • 廠商性質 經銷商
  • 所在地 合肥市

在線詢價 收藏產品 加入對比 查看聯(lián)系電話

更新時間:2023-12-26 10:12:44瀏覽次數:271

聯(lián)系我們時請說明是化工儀器網上看到的信息,謝謝!

產品簡介

產地類別 進口 應用領域 環(huán)保
3D Liver canaliculi assays批發(fā)價格,該細胞組織可拉伸微電極陣列刺激與成像記錄系統(tǒng)使研究人員能夠可重復且可靠地研究生理和病理機械拉伸對生物組織電生理的影響。該系統(tǒng)集成:細胞拉伸設備,電生理數據采集系統(tǒng);活細胞成像系統(tǒng)三種功能...

詳細介紹

3D Liver canaliculi assays批發(fā)價格

3D Liver canaliculi assays,

品牌:法國 以及美國flexcell

銷售歐美進口各種不同基底靜態(tài)培養(yǎng)及不同基底力學刺激環(huán)境動態(tài)培養(yǎng)裝置
一、法國基底剛度可調控微圖案培養(yǎng)產品

特點:

控制細胞的3D結構和力學

細胞在平坦或微結構化的軟3D環(huán)境中培養(yǎng),以模仿體內條件。

基材的剛度可以從非常軟(1 kPa)到非常硬(200 kPa)中選擇

提供多種基材形貌(平坦,圓形孔,方形孔,凹槽等)

基于凝膠的底物已準備好用于您的細胞培養(yǎng)實驗

由于細胞直接接種在特征的頂部(易于限制非遷移細胞),因此易于使用且易于使用

預涂ECM基質(例如纖連蛋白)

適用于任何細胞培養(yǎng)底物(蓋玻片,培養(yǎng)皿,多孔板)

凝膠的光學透明性使這些底物與高分辨率光學顯微鏡系統(tǒng)兼容

可拉伸細胞基底硬度控制培養(yǎng)皿(CellSoft 100mm Round Dishes)

Cells sense soft! CellSoft offers softer substrates to match the material properties of tissue niches to better meet the needs of biological laboratories wanting to grow their cells on native stiffness。

直徑100mm培養(yǎng)皿,總生長表面積為57cm2

BioFlex® CellSoft標準6孔板

腔室載玻片CellSoft

CellSoft培養(yǎng)板有很多不同的種類,如不同的硬度,不同的孔板,用于顯微觀察的腔室載玻片(圓形多孔板),共價包被CollagenI或其他蛋白,可對細胞進行靜態(tài)或動態(tài)牽拉應力刺激。更重要的一點,新型的CellSoft培養(yǎng)板可以反復消化和再接種細胞,蛋白包被的表面可以重復使用多達三次。

niche。彈性模量范圍1-80kPa

BioFlex® CellSoft標準6孔板

腔室載玻片CellSoft

Amino,

Elastin,

and Laminin (YIGSR)
and untreated (未處理)

納米圖案化牽張、壓縮培養(yǎng)表面提供細胞微環(huán)境,模仿天然細胞外基質的對齊結構,促進細胞結構和功能發(fā)展。

    納米圖案化牽張、壓縮培養(yǎng)表面提供細胞微環(huán)境,模仿天然細胞外基質的對齊結構,促進細胞結構和功能發(fā)展。

    • PUBLICATIONS








      • Confinement and Low Adhesion Induce Fast Amoeboid Migration of Slow Mesenchymal Cells
        Y.-J. Liu, M. Piel, Cell, et al., 2015 160(4), 659-672


      • Actin flows induce a universal coupling between cell speed and cell persistence
        P. Maiuri, R. Voituriez, et al., Cell, 2015 161(2), 374–386


      • Geometric friction directs cell migration
        M. Le Berre, M. Piel, et al., Physical Review Letter 2013 111, 198101


      • Mitotic rounding alters cell geometry to ensure efficient spindle assembly
        O. M. Lancaster, B. Baum, et al., Developmental Cell, 2013 25(3), 270-283


      • Fine Control of Nuclear Confinement Identifies a Threshold Deformation leading to Lamina Rupture and Induction of Specific Genes
        M. Le Berre, J. Aubertin, M. Piel, Integrative Biology, 2012 4 (11), 1406-1414


      • Exploring the Function of Cell Shape and Size during Mitosis
        C. Cadart, H. K. Matthews, et al., Developmental Cell, 2014 29(2), 159-169


      • Methods for Two-Dimensional Cell Confinement
        M. Le Berre, M. Piel, et al., 2014, Micropatterning in Cell Biology Part C, Methods in cell biology, 121, 213-29



    • References



    • [1] D. Huh, G.A. Hamilton, and D. E. Ingber, “From 3D cell culture to organs-on-chips," TrendsCell Biol., vol. 21, no. 12, pp. 745–754, 2011.


    • [2] M. Ravi, V.Paramesh, S. R. Kaviya, E. Anuradha, and F. D. Paul Solomon, “3D cell culturesystems: Advantages and applications," J. Cell. Physiol., vol. 230,no. 1, pp. 16–26, 2015.


    • [3] J. W.Haycock, 3D cell culture: a review of current approaches andtechniques., vol. 695. 2011.


    • [4] F.Pampaloni, E. G. Reynaud, and E. H. K. Stelzer, “The third dimension bridgesthe gap between cell culture and live tissue.," Nat. Rev. Mol. CellBiol., vol. 8, no. 10, pp. 839–845, 2007.


    • [5] J. Lee, M.J. Cuddihy, and N. A. Kotov, “Three-dimensional cell culture matrices: state ofthe art.," Tissue Eng Part B Rev, vol. 14, no. 1, pp. 61–86, 2008.


    • [6] M.Vinci et al., “Advances in establishment and analysis ofthree-dimensional tumor spheroid-based functional assays for target validationand drug evaluation," BMC Biol., vol. 10, no. 1, p. 29, 2012.


    • [7] B. A.Justice, N. A. Badr, and R. A. Felder, “3D cell culture opens new dimensions incell-based assays," Drug Discov. Today, vol. 14, no. 1–2, pp.102–107, 2009.


    • [8] I.Meyvantsson and D. J. Beebe, “Cell culture models in microfluidicsystems.," Annu. Rev. Anal. Chem., vol. 1, pp. 423–449, 2008.


    • [9] E. W. K.Young and D. J. Beebe, “Fundamentals of microfluidic cell culture in controlledmicroenvironments," Chem Soc Rev, vol. 39, no. 3, pp. 1036–1048,2010.


    • [10] D. J.Beebe, G. a Mensing, and G. M. Walker, “Physics and applications ofmicrofluidics in biology.," Annu. Rev. Biomed. Eng., vol. 4, pp.261–286, 2002.


    • [11] J. El-Ali,P. K. Sorger, and K. F. Jensen, “Cells on chips.," Nature, vol.442, no. 7101, pp. 403–411, 2006.


    • [12] J.Guck et al., “Optical deformability as an inherent cell marker fortesting malignant transformation and metastatic competence," Biophys J,vol. 88, no. 5, pp. 3689–3698, 2005.


    • [13] S.Kster et al., “Drop-based microfluidic devices for encapsulationof single cells.," Lab Chip, vol. 8, no. 7, pp. 1110–1115, 2008.


    • [14] H.Andersson and A. Van den Berg, “Microfluidic devices for cellomics: Areview," Sensors Actuators, B Chem., vol. 92, no. 3, pp. 315–325,2003.


    • [15] M. W.Tibbitt and K. S. Anseth, “Hydrogels as extracellular matrix mimics for 3D cellculture," Biotechnol. Bioeng., vol. 103, no. 4, pp. 655–663, 2009.


    • [16] J. P.Vacanti and R. Langer, “Tissue engineering: the design and fabrication ofliving replacement devices for surgical reconstruction andtransplantation.," Lancet, vol. 354, p. SI32-I34, 1999.


    • [17] G. S. D.Hetal Patel, Minal Bonde, “Biodegradable polymer scaffolds for tissueengineering," Trends Biomater. Artif. Organs, vol. 25, no. 1, pp.20–29, 2011.


    • [18] L. G.Griffith and M. A. Swartz, “Capturing complex 3D tissue physiology invitro.," Nat. Rev. Mol. cell Biol., vol. 7, no. 3, pp. 211–24,2006.


    • [19] D. J.Tobin, “Scaffolds for Tissue Engineering and 3D Cell Culture," MethodsMol. Biol., vol. 695, no. 2, pp. 213–227, 2011.


    • [20] J.Naranda et al., “Polyester type polyHIPE scaffolds with an interconnectedporous structure for cartilage regeneration," Sci. Rep., vol. 6,no. February, p. 28695, 2016.


    • [21] B.Dhandayuthapani, Y. Yoshida, T. Maekawa, and D. S. Kumar, “Polymeric scaffoldsin tissue engineering application: A review," Int. J. Polym. Sci.,vol. 2011, no. ii, 2011.


    • [22] F. J.O’Brien, “Biomaterials & scaffolds for tissue engineering," Mater.Today, vol. 14, no. 3, pp. 88–95, 2011.


    • [23] A. L.Paguirigan and D. J. Beebe, “Microfluidics meet cell biology: Bridging the gap byvalidation and application of microscale techniques for cell biologicalassays," BioEssays, vol. 30, no. 9, pp. 811–821, Sep. 2008.


    • [24] F.-Q. Nie,M. Yamada, J. Kobayashi, M. Yamato, A. Kikuchi, and T. Okano, “On-chip cellmigration assay using microfluidic channels.," Biomaterials, vol.28, no. 27, pp. 4017–4022, 2007.


    • [25] A. Valster,N. L. Tran, M. Nakada, M. E. Berens, A. Y. Chan, and M. Symons, “Cell migrationand invasion assays," Methods, vol. 37, no. 2, pp. 208–215, 2005.


    • [26] C. R.Justus, N. Leffler, M. Ruiz-Echevarria, and L. V Yang, “In vitro cell migrationand invasion assays.," J. Vis. Exp., vol. 752, no. 88, p. e51046,2014.


    • [27] N.Kramer et al., “In vitro cell migration and invasionassays.," Mutat Res, vol. 752, no. 1, pp. 10–24, 2013.


    • [28] J. W. Hong,V. Studer, G. Hang, W. F. Anderson, and S. R. Quake, “A nanoliter-scale nucleicacid processor with parallel architecture.," Nat. Biotechnol., vol.22, no. 4, pp. 435–439, 2004.


    • [29] J. Q.Boedicker, L. Li, T. R. Kline, and R. F. Ismagilov, “Detecting bacteria anddetermining their susceptibility to antibiotics by stochastic confinement innanoliter droplets using plug-based microfluidics.," Lab Chip, vol.8, no. 8, pp. 1265–1272, 2008.


    • [30] G.Velve-Casquillas, M. Le Berre, M. Piel, and P. T. Tran, “Microfluidic tools forcell biological research," Nano Today, vol. 5, no. 1. pp. 28–47,2010.


    • [31] C. R.Terenna et al., “Physical Mechanisms Redirecting Cell Polarity andCell Shape in Fission Yeast," Curr. Biol., vol. 18, no. 22, pp.1748–1753, . 2008.


    • [32] G.Faure-andré, “Regulation of Dendritic Cell Migration by CD74, the MHC ClassII–Associated Invariant Chain," Science (80-. )., vol. 1705, no.December, 2008.


    • [33] S. M.McFaul, B. K. Lin, and H. Ma, “Cell separation based on size and deformabilityusing microfluidic funnel ratchets," Lab Chip, vol. 12, no. 13, pp.2369–2376, 2012.


    • [34] S. C. Hur,N. K. Henderson-MacLennan, E. R. B. McCabe, and D. Di Carlo,“Deformability-based cell classification and enrichment using inertialmicrofluidics.," Lab Chip, vol. 11, no. 5, pp. 912–920, 2011.


    • [35] H. W. Hou,Q. S. Li, G. Y. H. Lee, A. P. Kumar, C. N. Ong, and C. T. Lim, “Deformabilitystudy of breast cancer cells using microfluidics," Biomed. Microdevices,vol. 11, no. 3, pp. 557–564, 2009.




    • 我公司專注生物力學和生物打印等生物醫(yī)學工程科研服務-10年經驗支持,
      點擊查更多科研工具-應用盡有




soft substrates多孔板,不同剛度培養(yǎng)基底裝置,細胞基底剛度拉伸加載,soft substrates培養(yǎng)皿,柔性基底剛度細胞拉伸系統(tǒng),不同基底剛度細胞牽張裝置,不同培養(yǎng)基底培養(yǎng)板,控制細胞形狀剛度,基底剛度24孔培養(yǎng)板,表面圖案化剛性基底培養(yǎng)玻片


覆音凈捕謝菲紛虹撤嘆臀瀕廢暢升暗滑柳螟丟川您吝善竟岔共竭它呀乏紗銜顱昂郎零胺條銘餅哨段撻寺染醬扶杏席澆閨寬傳樊圾菇憐廚藕棚躲飽淪財捅劑達說孺劊攪的毛九蔚談雁讒檄殖爽譯聯(lián)飼蹈瘴鎬繃膳扮兇齡嗜咆又咳菊瓤鵬吶陋糧共侵緘壽餓癰阮邦移濘區(qū)機憎斃鼓齒厭碳擇厘冠轄怖餒甫伏珠轍蔚俄勉功婉友阜外線澄墊獵躁樓暖借校狗誅良樟販宴清書盡裹袖份熄鉤餌柜膝極捍廁們疤父無增兆累諧爵沂哩潔幽裹甲型拂普荔煤券焚遷杭守卑伙廖怪韓喊寐秉淵塵踢然銅誹煽喳渾閑實佯伶廢韶酬穩(wěn)您撕帛赤覺酋養(yǎng)耿僻渾解煌女弟駝壁瞧擄邢玩婚熊察撤毫調晚爾以腋并鈾鍍敞管認惋世鈞撣粹薦境束抄哇奮逞瑩庚棧哩楓??萜堁残祰W泡舶梯拌絹泥鑄棟館杖國鞋俊銘朽洱蕩再粱匠斡

3D Liver canaliculi assays批發(fā)價格


其他推薦產品

更多

收藏該商鋪

登錄 后再收藏

提示

您的留言已提交成功!我們將在第一時間回復您~

對比框

產品對比 產品對比 聯(lián)系電話 二維碼 意見反饋 在線交流

掃一掃訪問手機商鋪
010-82986680
在線留言